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References [ 1.2 1 suggest a model for description of soil motions and 
similar media. For determination of detailed properties of such a model 
and development of qualitative properties of motions described by the 
model, it is necessary to consider simple formulations of problems which, 
while allowing a complete analysis under most general assumptions about 
the model characteristic functions, permit one to study the general 
qualitative properties of the motions for these simple formulations with- 
out concretely defining the functions considered. Among such functions 
is the function f from the relation p = ftp, p,) describing volumetric 
deformation of the medium and the function F from the plasticity condi- 
tion J2 = F(p) characterizing shear deformation. 

This work carries out a general investigation of one such simply for- 
mulated problem, namely. the one-dimensional motion of a medium under 
slowly varying externally applied loadings when it is permissible to 
neglect accelerations in the equations of motion. Such motions are termed 
quasi-statical. The following qualitative properties of the problem have 
been established resulting from analysis of problem solution. First, con- 
sideration of the plane one-dimensional problem leads to the conclusion 
that with the increase of the axial compressive stress - uZ, after the 
elastic shear deformation is exceeded and further deformation is plastic, 
there will be an instant when in the presence of sufficiently large 
stresses the shear will again occur elastically. If in addition one makes 
a natural assumption that the shear elastic region F(p) remains bounded 
for p + m (of the order of G, the shear modulus) then with the increase 
in compressive stresses there will occur (now under elastic shear condi- 
tions) a drawing together of the axial and lateral stresses (7% and uy. 
The state of stress will approach a state of hydrostatic compression. 
It is worth noting in this connection that such an effect, apparently, 
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actually takes place under the conditions of natural stratifications in 

rocks: there exists an opinion that at great depth the lateral rock 

pressure is close to the vertical pressure. 

Further, the study of the centrally symmetrical problem leads to the 

conclusion that if the function F(p) is such that d (3F(p)) - F’(p) < 0 

for certain values of p. then in the region of motion there occur limit 

lines, similar to the analogous problem in gasdynamics (stationary gas 

flow of the source or sink type). In the given situation the occurrence 
of the limit lines is not permissible on physical grounds. Therefore one 

should accept the assumption that for any real media the function F(p) 

should satisfy the condition d (3F(p)) s> F’(p) for all values of p 

(analogous to gasdynamics, for example where it is necessary to assume 

that for all gases the adiabatic characteristic y I> 1). 

Finally, the consideration of the centrally symmetrical case shows 

that if in the infinite space, filled by a medium, there is a spherical 

cavity in which the pressure is slowly increasing, then the equilibrium 

is possible with the finite radius of the cavity only for the pressures 

not exceeding some limit value. With pressure approaching the limit 
value the radius of the cavity tends to infinity. This indicates that 

the medium cannot sustain arbitrarily large values of pressure within 

the cavity; with increase in pressure the resistance of the medium de- 

creases. Its characteristics tend to approach those of a liquid. If the 

initial radius of the cavity is zero, then for pressures less than the 

limit values the cavity is not formed at all. In approaching the limit 

pressures a cavity of an arbitrary radius is formed, while for pressures 

above the limit an equilibrium is not possible (in any case a symmetric 

form of equilibrium). These results are somewhat unexpected and their 

prediction would have been difficult. 

1. We shall consider the motion in the Cartesian, cylindrical and 
spherical system of coordinates corresponding to the motions with the 

plane, cylindrical and central symmetry. In these three cases we shall 

have the following expressions for the components of stress tensors and 

deformation velocities 

for v = 0 

QbTx - Q, 

for v = 1 

( x is everywhere a linear coordinate) 

Qyy = ozz = 01, 3p = -(5 j- 251) 
au 

e Xx=-&g’ e uu = ezz - -0 

= 61, G,, = G2, 3P = -(Gl + G, $ $) 
,au 

e xx=qg, eee = ;, e -0 .?z - (1.1) 
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for v = 2 

ci xx= 6, CJge = 6* = 62, 3p = - (a + 26,) 
au 

exX = ar , eee = e,, = a /x 

Here u is the only nonzero component of the velocity vector. 

One-dimensional motion is described by the following system of rela- 

tionships [2 I: 

g+pg+df$=o, p+!E+yJCp 

d(6;P) +s(~+p)=2G[f&+($+v+)] 
(1.2) 

d(~~~P)+h(~1+p)=2G[6%--(~+y~)] 

“‘;$ P) + h (~5~ + p) = 2G I]0 - 4 (g + v %)] 

P = f (P, P,) e (P. - P> e (p - PO) = f” (P, p,), + = -$ e (p - P,) e ($) 

where J, < F(p) and 

J2 = f [(a + p)” + (al+ P)” + (02 + P)~I for v = 1 

J2 E f [(a + p)” + 2 (a, + p)“l for v # 1 (1.3) 

In these formulas 

h= ZGW--'(p)dp/dt 

2F (~1 
e [J2 - F (p)] e [2GW - F’ (p) $$] 

2GW~2G(o+p) (2-d;) for, Y#I 

2GW - 2G [(CS + p) 2 + (a, + p) z] for Y = 1 

(1.4) 

0, v=o 
6= * 

{ ) v = 1,2 

If the shear occurs elastically, i.e. J, < F(p), then X e 0, if not, 

then A > 0. 

I.& us pass to the Lagrangian variables by using 

x = x(a, t), 
ax a I a u =x=x’, -=-_ ax za aa (1.5) 

From (1.2) we have ((1.4) is transformed analogously) 
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& (P%J;“) = 0, px,x(t = 6, _t v 9 xa 
(1.6) 

'alnx, 2, alnx 
~(G+p)+~(GtP)=4~~~--- 1 :! at I 

& (al-!- p) + h (aI+ p) = - y [qp - (36 - Y) F] 

Substituting 

5Vfl zzz y, cy+1= z (1.7) 

we obtain from (1.6) 

2v -- 

@!I$,2 Y “+l 
( 

V Y12 
ytt------- = 

V+l Y > 
6, + -.-T-- 

a - 61 

V+l Y 
~ 9, 

(1.8) 

-g@+P)+u 6 i- P) = T & [In Y, - 2 (V3i 1) In Y] 

+ (aI+ P> + h (QI + PI = - F -g [In y, - &- In y] 

Considering further the motion to be quasi-stationary and originating 

from the state of constant density p,,,,, we finally obtain the system 

(1.8), with the first two equations of the form 

(1.9) 

2. Let us consider the plane case (V = 0). If shear occurs elastic- 

ally, i.e. X = 0, then from (1.8), (1.9), considering that G= G(p) and 

for t = 0, p = po0, u + p = 0, we obtain 

’ G(P) 
0 = - f” (P, P,) - $ \ p dP, s1 = -- f” (p, p,) -; + ‘I G (P) I -j-dP'(2.1) 

PO0 cm 

P = P (47 y = y z + y,(t) 

where p(t) and y,(t) are arbitrary functions to be defined by two bound- 

ary conditions. It may happen that before shear becomes plastic p will 

attain a value p,, and p, will begin to vary. Ibis variation may be 

easily determined from the p*-equation in (1.2). Plastic shear will 

occur when the following condition becomes satisfied: 

'G 

s 
Pdp = + )'+W"(P, PJI (2.2) 

PO0 
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Here the upper limit corresponds to the compression of the medium, 
i.e. the condition u < al, and the lower limit to rarefaction, i.e. the 
condition u I> ul. 

If shear is plastic then 3/4(u + p)* = F(p) and the solution is obtain- 
able by simple substitution of the first two formulas in (2.1) by 

Q = - f” (p, P,) F $ V3F if” (P, P,) 1 

Q1 = - f” (o, P.) f $ V3p If” (P, PAI (2.3) 

Consider the expression for X . When J, = F(p) the value of X is non- 
zero if 2’G W - F’(p)dp/dt > 0. In this case 

(2.4) 2GW - F’ (p) $- &G(o+p)(-+$)- 

‘Ihis expression shows that if plastic shear began during rarefaction, 
i.e. when t3.p /a t < 0, then it will persist to the end of rarefaction up 
to the point of loosening (p = pO) since (2.4) is positive (lower sign). 
If, however, the shear began during compression (upper sign) then, de- 
pending on the function f” and F, it may persist indefinitely, since 
there will occur such a time when X becomes zero and thereafter shear 
will occur elastically. Ihe latter will take place particularly if p in- 
creases without limit with the increase in p, but F(p) remains bounded. 
In this case the solution should be continued with the aid of the equa- 
tions describing the elastic shear. It is easily verified that in this 

case J, < F(p). 

3. Let us study the spherical case. We will consider monotonic pro- 
cesses of loading andunloading from the initial homogeneous condition. 
In this case one may assume that p and p are well defined by some rela- 
tionship p = qNp) ( see (1.2)). Initially shear will occur elastically, 
i.e. X = 0 and J, < F(p). At this stage, integrating the corresponding 
equations in (1.8) and assuming for simplicity that G = const, we obtain 

a=---‘p (3.1) 

-+Gl+, uZ+’ 

For determination of y(z) we obtain further the equation 
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Solving from this for y(z) under corresponding boundary conditions 
we will obtain a complete solution for the elastic shear problem. 

Let us investigate this equation, Since $(y,) > 0, y, > 0 and the ex- 
pression in the brackets of Equation (3.2) is negative for all values of 
zy ,/y on which it depends only (except one value ty,/y = 1 ), we conclude 
that 

(3.4) 

This indicates that at the stage when shear occurs elastically dens- 
ity is a nondiminishing function of the distance from the center. 

This result appears somewhat paradoxical in the case of deformation 
due to a pressure rise in a certain spherical cavity in the medium when, 
it would appear, the medium should condense. The result derived is con- 
nected with the law of elasticity assumed in the model considered. How- 
ever, since an elastic response takes place for sufficiently small de- 
formations, as we shall see later, for which the density variations are 
generally unimportant and for which, neglecting small quantities, one 
may obtain a solution by way of the solution for the theory of elasti- 
city problem, the result obtained should not be too disturbing. 

Equation (3.2) permits extension along y and t an equal number of 
times, therefore a lowering of order is possible. It has a particular 
solution y = cr. At the same time dp/dz = 0, zy,/y = 1,the above noted 
root of the right-hand side of (3.2), u = o1 = - C+(P) = const. This so- 
lution corresponding to hydrostatic compression (rarefaction) is real- 
ized under specially given boundary conditions (similar deformation). 

Fig. 1. 

For investigation of the remaining solu- 
tions of (3.2) introduce variables 

Y, = Q7 y/z =cL (3.5) 

Then (3.2) is transformed into an equa- 
tion of first order 

(3.6) 

‘I, 
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It is easily shown that h(v)> 0 for 0 < v < 1 and h(v) < 0 for 1 < v, 
and Ml) = 0. ‘Iherefore the field of integral curves of (3.6) is as 
shown in Fig. 1. If for unlimited increase in pressure p the density re- 
mains limited (bounded), then the field of the integral curves will be 
limited from below by a limit straight line, i.e. solution q = ?,= 

poO,ke, = const, where p, is the density at p = a~, and in the opposite 
case by the axis q = 0. At the left it is bounded by the solution a = 0. 

If the relation q = q(a) is known, then all the other characteristics 
are found from the formulas 

P = PO0 / QY P = cPfPoo/Q) 

The 
2, Ihe 

tonic. 

qualitative nature of the relationships in (3.7) is shown in Fig. 
distribution of the quantities q, p, p, CT, along a is nonmono- 
For Q = a the first three quantities possess an extremum while 

the quantity u is 
from the formula 

a strictly diminishing function of a. Ihe latter stems 

dg -=- 
da (3.8) 

following from (3.7) and (3.6). The distribution character for o,(a) is 
established in an analogous mauner. 

The solutions for elastic shear investigated above are valid only for 
J, < F(p). The condition J, = F(p) on the surface q, a will determine 
the boundary for the region of elastic shear. It can easily be shown that 
this condition yields the following equations for the boundary: 

so that the region of elastic shear is defined 
by the inequalities 

Fig. 2. 
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We will consider that F(O) = 0 and 

P = 0, P = PO. Then the lines (3.91, 

F. L. Chernous ‘ko 

at the point q = q,, = a0 = poo/pO. In 

that the loosening occurs when 

(3.10) on the plane q, a will meet 

decreasing q from q,, to q, the 
^ ._ 

line (3.9) is monotonically lowered into the point q = q,, a = U if 
F(p)+.mforp+ m, or merges with the straight line q = q, for nonzero 
a = al(q‘,) < CJ_ (Fig. 1, dotted line) if F(p) is limited. Curve (3.101, 
generally speaking, is nonmonotonic. It will approach the straight line 

q = 4, asymptotically if F(p)+ m for p -f W, or will merge with it for a 
finite a = a2(qJ > q, and limited F(p). To the left of the curve (3.9) 
and to the right of (3.10) on the plane q, a, it is necessary to construct 
a solution with plastic shear. In approaching the line (3.9) from the 
region of elastic shear a + p + 2/3 d ( 3 F(p)) (stretching ), while in 
approaching (3.10) o + p + - 2/3 \/ (3 F(p)) (compression; see (3.7)). Tran- 
sition to the plastic state occurs for a certain z = z*, whereby tile 
relations 

Ye = YP, 6e = OP (3.2 1) 

expressing the continuity of deformations and radial normal stresses take 

place (e denotes a quantity from the elastic solution and p from the 
plastic one). Since in this case 

J, (e, p”) - F (P”) -+ 0, J, (o, p”) - F (p”) = 0 

then for z = z* the relation pe = pf’ will also be fulfilled, and con- 
sequent ly p e = pp, YE = yc. ‘Ihis means that 

P = q”, oe = a~ (3.12) 

i.e. in the plane q, a the integral curves must pass continuously from 

the elastic into the plastic region. 

4. For the state when shear is plastic, J, = F(p) and we have 

5 = -q+$I/3F(p), ;r =x -PJ$V3F(P) (4.1) 

Substituting (4.1) into (1.9) and taking into account the relation 

P = &P(-Jo/Yz) we will obtain a basic equation for plastic shear 

This equation written in the form 

(4.2) 
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is integrated 

where A = A(t) is a constant of integration. In principle, the dependence 
of y on 2, containing two constants of integration, can be obtained by 

inverting the relation p = qS(p) = &p,,/y,), substituting in the result 

the inversion (4.3) and carrying out the quadrature. However, it is more 

convenient to obtain this dependence in a parametric form. Namely 

Formulas (4.3) and (4.4) yield the solution of Equation (4.2) with 

two arbitrary constants A and B; however, in coupling with the solution 
for the elastic shear it is convenient to use the variables 

Making this transformation we will obtain from (4.2) ((4.2) 

tion y = CL)) 

d9 -_= 
du 

q3 
POOT’ (PO0 / 9) u (9 - 4 

q and a. 

has no solu- 

(4.5) 

'lhe integral curves of Equation (4.5) should continuously match on 

the lines (3.91, (3.10) with th e integral curves of Equation (3.61, in 

accordance with the conditions (3.12). On the strength of (3.7) O+~O 0 

on the line (3.9), while on (3.10) (T + p < 0. 'Iherefore, because of con- 

tinuity in (T + p on (3.9) and (3.101, it follows from Formulas (4.1) 

that in the plastic region to the left of (3.9) one should choose the 

upper sign in (4.1) and the subsequent formulas and to the right of (3.10) 

the lower sign. Equation (4.5) shows that to the right of (3.10) dq/da<O 

and to the left of (3.9) dq/& < 0 if F(p) is such that 

'I-W.W3W)>O (4.6) 

If the latter inequality can be violated, then to the left of (3.9) 
the integral curves (4.5) can have regions with positive slope. 

Since at the point on an integral curve where the slope changes from 
negative to positive the sign of da is changing (see (4.5)), then at that 
point the sign of dz will also change (see formula for z in (3.71). i.e. 
at that point z will obtain a minimum value zmin. Beyond this point the 
solution becomes double-valued. A limit sphere z = zmin corresponds to 
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this point, the solution in the interior of which cannot be continued. A 

boundary (limit) line appears in the region where the solution is being 

constructed. The analogous phenomenon is well known in gasdynamics. In 

the case considered, this effect is tied to the Properties of F(p) for 

small p (in the region considered Q increases, i.e. p and p decrease on 

the surface of a). For example, if F(p) = (kp)2, which is equivalent to 

o1 = C(J, the condition for the appearance of the limit line will be 

k < l/2 d 3, or C I> 0.25. In future we will assume that the inequality 

(4.6) is satisfied and the limit line does not appear.* 

Integral curves of Equation (4.5) are defined below the straight line 

4 = Qo = Poe/P, which corresponds to loosening of the medium (p = 0). 

Since q is monotonically decreasing with increase in a along the integral 

curves of Fquation (4.5), while along the boundary of the elastic region 

(3.9) q increases, then each of the integral curves (4.5) intersects the 

boundary (3.9) at one point for q > a, i.e. each of the integral curves 

can be continued in only one way from the elastic into the plastic region 

for q > a, so that in further motion along the curve we shall remain in 

the plastic range up to the loosening condition. Analogously for q > a 

and increasing q moving along any integral curve in the elastic region, 

we will reach the boundary (3.10), after which we pass continuously on a 

certain integral curve of Equation (4.5). In moving along (4.5) q will 
decrease, but since (3.10) has regions with negative slope it is not 

clear that we will not reach the boundary (3.10) again. In order to prove 

that this cannot happen for any integral curve of Equation (4.5), we will 

write down the general solution of this equation, dividing (4.3) by (4.4) 

and recalling that y/3 = a(poO/q); the result is 

a = r~P[k3/2@*(P)1 

1/3F (P) 
(I & a+ (P) + +)-I 

Here 

(4.7) 

(4.8) 

Here p and B/A are arbitrary. If a point is given on the boundary 
(3.10) (or (3.9)) through which the curve (4.7) should pass, then this 

l Note that the function F(p) constructed as the result of experiments 

with sandy soils in [3 I satisfies this condition. 
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yields the conditions for determination of p1 and B/A. Indeed, condi- 
tions a = a1 2r q = q1 yield p = ~(p~~/q~) = p1 which determines pI and 
a I 2 = A/B d*(3 F(pl)); whence B/A = J/cz~,~ I/ (3 F(pl)). Substituting p1 
anh B/A into (4.7) we obtain 

Substituting here in place of s1,2 Expressions (3.9) and (3.10) 

we finally obtain 

Choosing now the lower sign for the case q C: a we evaluate the inte- 
gral in the denominator of (4.111, using the inequalities p,> p > p1 
which are satisfied on the integral curve for q < a; as the result, using 
(4.9) and (4.8) we obtain 

=-ppl{l- Jgexp[--$@i(P)]) 

Analogously, substituting'p_, for .p(p) we obtain 

K>--P,{l--~~exPj--~~,(P)~} 

Therefore the following inequality is satisfied for the denominator 

D of the right-hand side of (4.11): 

<D<P+P [-~V3F)]-i + i/F$e~p[--++ (~~)]}(4.$2) 
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The p-dependent components on the right-hand side of (4.12) tend to 

zero for p + 00 in the case when F(p) is bounded for p -t m as well as 

whenF(p)+ mforp+ 00; consequently, the right-hand side tends to 

-fh{l--cspI_-$1/3F(p,ll}<O 
for p + m. 

Therefore D becomes negative for sufficiently large p. This means 

that there exists a value of pressure p*(pl < p* < m ) for which D = 0, 

i.e. a= 00. This indicates that the integral curves have horizontal 

asymptotes q, = q(p*) < q1 for a < q. 

We will show now that the integral curve, having its origin at the 

point on the boundary (3.101, does not cross this boundary anywhere else. 

For q, < q < q1 and using (4.12) we obtain from (4.11) 

a>- P""Y(P) =P [---/2% (PII 
21 {e.v I- lid-l V3F WI - 1 + Y (~1 exp [-- 3/2’% (p)l! 

On the other hand, we have along the boundary 

a = % = q exp [A VW(p)] < 2 exp [& 7/3F (p)] 

‘Iherefore in order to prove that a > a2 it is sufficient to show that 

pooY (P) exp [-- 3/~ @I (P)I lf3F (P) 

PI {exp I- ‘/zG-~ 1/3F (PI) -1 +,y (~1 exp I-- ‘/z WP)II 
>Eexp- 

2G 

or 

I - exp [- & 1/3F] > 1/S) {1 , 

Instead of the last inequality it is sufficient to show a stronger 

_exp -vyl I Jl exp [- 3/2@I WI 

one 

for the condition 0 < x1 < x. But C+(X) is decreasing monotonically for 

x > 0, which is the proof required. ‘Ihe statement that the continuation 

of any integral curve from the elastic into the plastic region realized 

uniquely remains completely in the plastic region is proved by the same 

argument. Thus, the half-strip a > 0, qO > q > q, of the plane q, a is 

covered by the single-parameter family of integral curves, where at the 
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same time, at each point in this region, one and only one curve passes 
through it. An example of curve distributions is shown in Fig. 3. 

Fig, 3: Fig. 4. 

Figure 4 shows an example of p, p, u, etc. distributions along a. 

5. We will show that in the plastic region X > 0 everywhere. For the 
case considered Formulas (1.4) give 

J/=+1 - a 2Gln ‘- 
-V3F (P) at I L a + J3F (P)]} e Va - F (P) 1 x 

x eji~[2GIn$f1/3F(p)i} (5.1) 

In this expression differentiation with respect to t is for fixed z 
and is equivalent to differentiation with respect to the monotonically 
varying boundary parameters. It is necessary to verify that, in fact, in 
the plastic region, i.e. for J, = F(p), the expression 

(5.2) 

is everywhere negative. For the given boundary conditions the solution 
of the problem is defined by the value of the parameter which isolates 
q, a and by the values of a at the ends of the part of this integral 
curve corresponding to the boundary-value problem. If one takes the value 
a = aOO as such a parameter for which q = aOO, and takes into account 
that the deformation corresponding to any boundary-value problem may be 
considered as the succession of hydrostatic deformation leading to the 
attainment of the parameter aaa, and further deformation at constant 
aoO, then, since for hydrostatic deformation J, = 0, it is not necessary 
to consider the dependence of A on aoO in evaluating 6’A /t3 t. Tne values 
of the parameter a at the ends of the considered part of the integral 
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curve were worked out by monotonic change (during monotonic deformation) 

from their initial values, equal to a,,0 at the end of the hydrostatic 

stage of deformation. In the region q > a, where a < a,,,,, these values 

could be obtained, apparently, only by decrease from aOO. In the region 

4 > a, where a > aO,,, they were obtained by increase from aOO. Thus, one 

may consider that 
811 t/,4 acl 
-_= 
at az a1 

where aOO is taken constant in differentiating A and a is considered as 

the boundary value of a corresponding to the end of the part in the inte- 

gral curve considered. Carrying out the differentiation in (5.2) we ob- 

tain 

(5.3) 

Here the upper sign refers to the region q > a. In this region the 

deformation after the hydrostatic stage is a rarefaction and, as just 

mentioned, the boundary value of a should decrease monotonically, i.e. 

da/at < 0. Inasmuch as, in addition qa < 0, then in this region dA/dt> 0, 
i.e. h I> 0. In the region q < a there should be da/at > 0, therefore for 

h to be positive the following condition must obtain: 

Substituting in the above the expression for q, from (4.5) and per- 

forming certain transformations we obtain 

3F’ 

4G I/p 
(5.5) 

To prove (5.5) it is sufficient, apparently, to show that a,(q) < 

a*(q) where a2(q) is a function from (3.10), since the inequality (5.5) 

must take place only in the plastic range to the right of the boundary 

of (3.10). The condition ap < a2 is reduced to 

which is always satisfied, apparently, since the left-hand side is always 

smaller than and the right-hand side is always greater than unity 

(F'> 0). This fully proves the assertion that h > 0 everywhere in the 

plastic region. 
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Fig. 5. 

6. Let us consider the construction of 

Fig, 6. 

boundary-value problems. 

For the solution of such problems it is necessary to integrate the 
equation 

Yz=4(Y/z,c)=4(% 4 

where G is a parameter for the family of integral 
a. The general solution of this equation is given 

VIZ 

where y0 and z,, are arbitrary. 

Let us consider the field of integral curves for Equation (6.1). We 
will select some integral curve from the plane q, a and will choose for 
the parameter G a value a = aeo at the intersection point of the integral 
curve and the bisector of the-coordinate angle q = a. Along this curve a 
and q will change in the region a0 < a < 00, q. > q > q,, where a@, q0 
correspond to the point of soil loosening, q, is the asymptotic value of 
q for given aOO. 'Ihe curve is shown in Fig. 5. Points with abscissas al, 

a2 correspond to the boundaries between the elastic region al < a < a2 

and the plastic regions. On the plane y, z the lines a = const are rays 
running from the origin of the coordinates with constant field slope. 
The angle 0 G z G y/a0 is the region where the solution (6.2) is defined. 

curves on the plane q, 
by the quadrature 

The ray y = a OOz is a solution of (6.2). For the lower rays, i.e. 
a < aoO, q(a)‘> a, while for the rays with a > aoO, q(a) < a. In view of 
the homogeneity of (6.1) all integral curves for a < aOO can be obtained 
from any one of them by means of similarity transformation. It will be 
analogous with the curves for a > aOO. All this permits one to conclude 
that the origin of the coordinates contains only one particular solution 

Y = QOOZ, while all others, starting on the straight lines a = a0 and 
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a = =, are asymptotically approaching the particular solution. The slope 
of the integral curves is discontinuous on the rays a = aI, Ci=Cl 2’ An 
example of these curves is shown in Fig. 6. 

lhe particular solution y = a OOz corresponds to the condition of 
homogeneous deformation with constant density, pressure and hydrostatic 
stress o1 = u = - p. On the one hand it describes solutions of special 
boundary-value problems allowing such deformation, and on the other hand, 
since all integral curves for given a @a approach asymptotically this 
solution for z + 00, it expresses the natural property of the external 
solutions for the region z0 < z Q 00 existing in the damping of disturb- 
ances at infinity. 

Since q(a) > q(aoo) = aOO for a < aOO, the density increases from the 
loose density at y0 = a,-,zO 

p00~aLNl 

to the undisturbed density pi0 = poo/‘q(a,,o) = 

at z + o on the integral curves inside the angle a0 < a < aOO, 

these integral curves describe rarefaction. ‘Ihereby, the shear is elastic 
for the angle al < a < aOO and plastic for a0 < a < aI. 

Inside the angle aO0 < a < = the integral curves describe the deform- 
ation resulting from the application of additional compressive boundary 
stresses fo < o& < 0). Then, as was noted above, the medium elongates 
(angle a,,* < a < a,) during elastic shear, and only in passing to the 
plastic state does compressive deformation occur with compression of the 
medium resulting. 

The end parts of the integral curves correspond to the problems of 
deformation in spherical layers of a finite thickness medium for given 
displacement of the boundaries, corresponding to the given end points on 
the integral curve, or under the action of stresses u applied on the 
boundaries corresponding to these points. If the end of a part of the 
integral curve considered is on the ray a = aO, this means that the soil 
on the inner surface of the layer has been loosened. If the curve end is 
located on the ray z = 0 this corresponds to the problem when the initial 
radius of the inner boundary for the medium was equal to zero. 

It is interesting to note that since on this ray a = 00 and p, p, u 

etc. depend only on a for given aOO, this means that for all integral 
curves originating on the axis z = 0, the same u, the same pressure p, 

etc correspond to the initial point. ‘Ibis indicates that for given aoO, 
i.e. given initial states, there must be a fully determined value of the 
cavity-enlarging stress o = o [ ?,(aoO)I = o* for a cavity to be formed 
from a point. For CT > (I* no cavity is formed at all. For u = o* the 
cavity appears with an arbitrary radius and for a < D a balanced de- 
formation of the medium is not possible at all. 

* 
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Let US draw a vertical z = z0 on the plane y, z (Fig. 6) and consider 
the external problem for the region z0 < z < m. ‘Ihe section of the ver- 
tical between the rays a = aOu and a = a,, is a set of points correspond- 
ing to the various degrees of removal of the initial stress uiO up to 
complete removal leading to loosening. lhe section between a = aOO and 
a=a 2 corresponds to the application of additional compressive stresses 
- u for which, however, the medium outside the cavity remains everywhere 
in the elastic state (in shear). lhe section above the ray a = a2 corre- 
sponds to the application of still larger compressive stresses leading 
to the transition of a certain layer in the medium around the cavity into 
the plastic state (in shear). It is important to note here that for un- 
limited recession upward along this vertical the compressive stress 
- o(za) remains bounded, tending to the above-mentioned limit - o . This 
indicates that in the case when the cavity is widening in an infiiite 
medium from a finite (and not zero as above) initial radius, the stress 
which is creating the balanced widening of the cavity is bounded from 
above. If u > u* an equilibrium is possible and a finite radius is 
formed: 

For u + u we have y(z,) + DO, i.e. 
creasing wittout limit. 

the radius of the cavity is in- 

We will show, finally, how to construct the solution in the general 
case when two points z,,, y0 and zl, y1 are given, through which one must 
pass the integral curve (problem with given displacements). Clearly, 
these points should be given such that the inequalities z1 > zu, y1 s> y,, 
or zl < zo, y1 < y0 would take place. 

In this case one should first choose a,,a so that both points would 
fall into the region 0 Q z Q y/a,,. At the same time a certain integral 
curve will pass through the point za, ya. Should it pass above the second 
point zr, y, (if z1 > z,,) or below (if z1 < za) then it is necessary to 
decrease aO,, until the second point falls on the integral curve drawn 
through the first point. In the opposite case it is necessary to increase 
a,,,, and thus make the integral curve pass through both points. 

The fact that with the indicated changes in a it is possible to con- 
nect both points with a solution stems from the monotonic dependence of 
slopes in the linear elements of the field of Equation (6.1) on the 
parameters aa,,. Indeed, the smaller aO,, the lower is the corresponding 
integral curve in the plane q, a, i.e. it diminishes monotonically with 
decrease in aO,, for fixed a. 

Therefore for fixed z and y (fixed a) the slope q = dy/dz will 
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decrease with decrease in aOO. This monotonic property accounts for the 

assertions made previously in regard to the possibility of solving the 

problem with arbitrary zO, y,, and zl, yl. The uniqueness of solution is 

established as follows. Should two integral curves corresponding to two 

different aO,, p ass through two different points (only one curve passes 

through each point for given aoO) then, as it is clear from geometry, 

the following inequalities should be satisfied: 

Y (a,; %J .--‘: 4 (a,; %)““) * Q (%i a,,‘) ;:, q (c?; a,,“) 

This is impossible since the curves q = q(a; aOO’) and q = q(a; aO,,“) 

cannot intersect. 

7. Let us investigate the solution for elastic shear in greater de- 

tail. From the relations (3.9) and (3.10) it appears that if the elastic 

stresses are small compared to the shear modulus G, i.e.,as is usually 

the case for elastic deformation, the stresses are relatively small, then 

al(q) and a2(q) will differ but slightly from q, so that the region in 

the plane q, a in which the solution is described by the integral curves 

of Equation (3.2) will be quite narrow in the direction of the a-axis. 

Inside this region for a = q the integral curves possess horizontal tan- 

gents; therefore, everywhere in the indicated region the curves will 

differ but slightly from these tangents. 

This shows that the elastic shear is sufficiently accurately described 

by the simple relation q = const in the variables q, a. Eht this corre- 

sponds to p = const, p = const. Formulas (3.1) here become 

yz=F=c, ?J=C"'-Cl, p=_@Z =p 
C J C 

1 

a=-pI-+G-~, a1 = - pI + +G % (c, cl = const) (7.1) 

taking into account the relation cl/cz << 1 stemming from the narrowness 

of the elastic zone in the plane q, a (i.e. from the condition (a1 2 -q 1 
<< q). But the relation (7.1) is none other than the problem solut:on in 

the ordinary theory of elasticity. 

In this solution the above-established (see (3.4)) effect of density 

decrease in elastic shear during loading (along a) or unloading does not 

now take place, i.e. it appears connected with small quantities of higher 

order compared with those which are important in the investigation of 

elastic shear. Complete solutions of boundary-value problems can be con- 

structed joining the solution for plastic shear (4.9) not with the exact 

solutions of Equation (3.2) but with the simple relation q = const, 

sufficiently well defining the elastic shear. Also, the solution of the 

problem is obtained in the form of finite formulas with a number of 
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arbitrary constants required for the solution of boundary-value problems, 
and it is given by the relations (4.31, (4.41, (4.11) and (7.1). 

In all the considerations above we assumed that the process of volu- 
metric deformation occurred in such a way that the pressure could be con- 
sidered a well-defined function of density, i.e. processes of monotonic 
loading were considered in which the existence of numerous branches of 
unloading in dependence p = f” (p, p, ) did not occur. In considering un- 
loading and nonmonotonic processes of loading in general, the solution 
of the problem becomes more difficult, although not in principle. If the 
loading program is given the solution of the problem will be constructed 
by means of consecutive considerations of subsequent monotonic components 
of the loading program. However, it is clear that for a sufficiently 
fanciful program such a consideration may represent quite an unwieldy 
problem. One may note also that in contrast to the monotonic processes 
for which one can construct a general solution in the form of finite re- 
lationships and carry out a full qualitative analysis, this cannot be 
done for nonmonotonic processes and the problems should be considered 
concretely. 

We do not consider here the cylindrical problem which is midway be- 
tween the plane and the spherical. It can be treated analogously, and it 
appears that the qualitative effects of this problem will be midway be- 
tween those of the two cases considered. 
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